

Managing HTRW Data at NAB by

Marc Randrianarivelo
Alan Warminski

Abstract

This presentation discusses the critical components in managing HTRW data successfully and efficiently. One key to the success is to select the appropriate computer application(s). Since a perfect application is non-existent to perform all tasks simultaneously, a combination of one or two powerful tools may be needed. For comparison, computer application such as ArcView/GIS, GIS/Key, EQUIS, and ERIS are evaluated. Summary of the findings and results are presented.

Introduction

- Managing data is becoming an important and inevitable task for HTRW projects
- With the proper tools, complex environmental problems can be easily solved
- The buzz words in the environmental industry are
 - Cost saving
 - Speed (i.e., quick turnaround)
 - Quality
- As the industry grows, data users are becoming smarter and more sophisticated. Electronic data are in demand; thus choosing the appropriate computer application(s) to manage them is one key to a project success

Environmental Data Types

- Chemical, Toxicological, and Ecological
- Geological and Hydrogeological
- Spatial Data
- Compliance Information
- Health and Safety Information
- Project Management Schedule
- Census

General Approach to HTRW Data Management

- Planning Phase
- Data Collection and Input
- Data Review
- Central Data Storage
- Data Ouput
 - Reports
 - Data Analysis
 - Exports

Data Management System Architecture

Case Studies AWI, VA

Atlantic Wood Incorporated (AWI) Project

- The Central Database Repository was EQuis
 - Equis is ideal
 - Adaptable: Can be customized for Specific Applications
 - Provides a limited Toolset for Data Entry
- Desktop Geographic Information Systems (Arcview/GIS)
 - Links Tabular and Spatial Data
 - Useful for:
 - Complex desktop data queries
 - All Types of Spatial Analysis
 - Regulatory Agency Meetings
 - Figure Generation

Case Studies (Continued)

ArcView GIS Used to Support Decision Making

Case Studies AWI (Continued)

- 3D Data Visualization
 - Using a Suite of Software including EVS for:
 - Analysis Transform Masses of Data into Useful Information
 - Communication Present Complex Issues in a Format that is Much Easier to Understand

Case Studies (continued)

Analysis: Integration of data from multiple sources

Case Studies AWI (continued)

- Communication Export Multiple Formats
 - Images
 - Useful in Reports
 - Virtual Reality Files
 - 3D Zoom, Translate, Rotate Capabilities
 - Animations

Case Studies AWI (continued)

- Chemical Data Validation by URS Woodward-Clyde
 - EDD was in EQuis format and converted into URS's Database (Microsoft Access- based)
 - Data were processed electronically
 - Data were used for:
 - Data Validation
 - Human Health Risk assessment
 - GIS, maps
 - Reports and trend analysis
 - Regulatory compliance

Case Studies AWI (continued)

Lesson Learned

- Need a better coordination between the Laboratory, Data Validator, and Prime Contractor
- Settle on EDD format at the earliest stage of the project
- Identify Out of Scope tasks and ensure that budget schedule is adjusted accordingly

Case Studies Spring Valley, DC

- The Central Data Repository is a Microsoft Access-based database
- Because of the complexity of the project and high volume of samples being collected (at more than 1400 residences), the system is powerful to:
 - Stores and Retrieve All Collected Data since Day 1
 - Generate/Store more than 1300 Figures and Maps (Save Maps as an Object Database to free space in ArcView)
 - Help Project Team in Tracking Sample and Right of Entry (ROE) for all Sampling Locations
 - Query Data timely at Public Meeting and RAB sessions
 - Be able to Answer Complex Questions by Data Users & Regulators

Case Studies Spring Valley, DC

(Courtesy of Parsons)

Case Studies Spring Valley, DC

Lesson Learned at Spring Valley

- Know the goals of the project before working on the data
- Spend some time analyzing data structure
- Ensure Correctness of GIS Data Projection
- Maintain Good Housekeeping of Metadata
- Store Maps in a Database to Free Project's Space
- Validate the Data Prior to Submission

Case Studies Kingman Island, DC

Kingman Island Project used GIS/Key System

- The system has:
 - Well Defined EDD Structures (ERPMIS-based)
 - FoxPro Back-End Database
 - Mapping and drawing by CAD
 - Recently added ESRI ArcView Interface to Enhance Spatial Data Analysis Capability
 - Data Validation Capabilities (except calibration info)
 - Up to 25% saving on data validation cost
 - Met project short span schedule due to its efficiency
 - Export Tools to generate Reports

Case Studies Kingman Island, DC

Lesson Learned (Kingman In-House Project)

- Ensure that budget schedule reflects the effort required
- Know Laboratory's capabilities prior to contract awarding
- Acquire adequate training for the system

Case Studies FNOD, VA

Former Nansemond Ordnance Depot Project, VA

- Data Resides on a Web Enabled Database System Managed by Synectics
 - Internet data system consisting of a SQL compliant database engine, loading/screening tool, query interface, and reporting interface
- Automatic Data Flagging
 - Ninety percent of the data was electronically qualified for evaluation of environmental chemistry results
- Web Enabled GIS
 - ESRI ArcView internet map server
- Web Enabled Project Management
 - Used to assist project management and tracking tools and reports

Case Studies FNOD, VA

Internet-Based Data Management Overview

Case Studies FNOD, VA

Sequential Data Submission Process

Radford Army Ammunition Plant GIS (RFAAP)

- NAB was tasked to take over and continue building the installation's GIS with one third of the original funding awarded to another agency
- First NAB project to implement Environmental Restoration Information System (ERIS)
- Also a pioneer for our in-house GIS
 - project team will present the outcome this week
 - → Will present at a RAB meeting in two weeks
- One main objective was for NAB to have control of data (i.e., what flows in and out of the database)

What is ERIS

(Environmental Restoration Information System)

- ERIS is the new environmental data repository for Department of Army
- It is mandated by Army (memorandum in 1998) that every Army installation will submit its environmental data (chemical, geologic and GIS data) to ERIS
- AEC has kept all data resided in IRDMIS and converted into ERIS

ERIS (Environmental Restoration Information System)

- ERIS is a web based application
- New data can be uploaded from any analytical lab as long as the lab is a contractor of an Army installation
- Old data can be batch uploaded or keyed into the system if they are not presently stored in the system
- Data can be queried and downloaded based on the users' requirements

Conclusion

- HTRW data management plays important role in making a project successful.
- By choosing the appropriate tools, complex environmental problems can be solved easily and efficiently
- A perfect application is non-existent to perform all tasks simultaneously but a combination of one or two powerful applications may be needed to do the job.
- Technologies are improving constantly; thus data users also must accept the changes and seek training to meet the challenges

US Army Corps of Engineers

Baltimore District